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Résumé :
La transformation probabilité-possibilité est une trans-

formation purement mécanique d’un support probabiliste
vers un support possibiliste et vice versa. Dans ce pa-
pier, nous appliquons les transformations les plus con-
nues sur des modèles graphiques i.e. réseaux Bayésiens
en réseaux possibilistes et vice versa. On montre que les
transformations existantes ne sont pas appropriées pour
transformer les réseaux Bayésiens en ceux possibilistes,
puisqu’elles ne conservent pas l’information incorporée
par les distributions jointes. C’est pourquoi, nous pro-
posons deux nouvelles propriétés de cohérence applica-
bles, exclusivement, pour la transformation des modèles
graphiques. L’étude expérimentale montre l’impact de
ces transformations sur les résultats de la propagation.
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Abstract:
Probability-possibility transformation is a purely me-

chanical transformation of probabilistic support to possi-
bilistic support and vice versa. In this paper, we apply
the most common transformations to graphical models,
i.e., Bayesian into possibilistic networks. We show that
existing transformations are not appropriate to transform
Bayesian networks to possibilistic ones since they can-
not preserve the information incorporated in joint distri-
butions. Therefore, we propose new consistency proper-
ties, exclusively useful for graphical models transforma-
tions. The experimental study highlights the impact of
these transformations on inference results.

Keywords:
Probability-Possibility transformation, Bayesian net-

works, Possibilistic networks.

1 Introduction

Graphical models are important tools proposed
for an efficient representation and analysis of
uncertain information. The success of graph-
ical representations is due to their capacity of
representing and handling independence rela-

tionships, which have been proved to be cru-
cial for an efficient management and storage of
the information. Moreover, graphical models
allow a local representation and reasoning eas-
ily supported by human mind. Bayesian net-
works [14] are studied under the broader class
of probabilistic graphical models. For instance,
the standard probability theory has proved its
efficiency when all numerical data are avail-
able. But, this theory is not suitable when deal-
ing with the case of total ignorance. This is
particularly true in probabilistic Bayesian net-
works when missing data do not allow any valid
treatment. So, when experts are unable to pro-
vide exact numerical values to quantify differ-
ent links between variables, it would be bet-
ter to switch to non-classical networks such as
possibilistic networks [14]. These latter are the
marriage between possibility theory and graph
theory. In real world, we have a huge num-
ber of possibilistic benchmarks that facilitates
experts and researchers’ work. However, while
possibilistic networks are widely used in prac-
tice, possibilistic benchmarks are too rare. In
such situation, researchers who work with pos-
sibilistic networks face two choices: either they
create new possibilistic benchmarks which is
costly, or they work with random networks
which may affect the quality of their results due
to the limits of randomness. Therefore, our idea
is to exploit existing probabilistic benchmarks,
and transform them to possibilistic ones, espe-
cially that the interest of probability-possibility
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transformation grew rapidly and is still grow-
ing to this day. These graphical models, which
share the same graphical component i.e. Di-
rected Acyclic Graph (DAG), are quantified us-
ing different distributions (i.e., probability dis-
tributions in the case of Bayesian networks and
possibility ones in the case of possibilistic net-
works). Recently, the inference topic in possi-
bilistic networks has been explored using com-
pilation techniques [1]. It has been shown
that the qualitative setting of possibility theory
goes beyond the probabilistic framework and
the quantitative possibilistic framework since
it takes advantage of specific properties of the
minimum operator. So, our objective in this pa-
per is to study the possibility of switching from
one model to another in order to reason in an
efficient way.
This paper is organized as follows: Section 2
presents most common transformations. Sec-
tion 3 presents some basics of Bayesian and
possibilistic networks. Section 4 studies the
particular case of transforming Bayesian net-
works into possibilistic ones. Section 5 presents
the experimental study that aims to follow the
impact of such transformation on the possibilis-
tic network inference results.

2 Probability-Possibility Transfor-
mation

Possibility theory introduced by Zadeh [15] and
developed by Dubois and Prade [6] lies at the
crossroads between fuzzy sets, probability and
non-monotonic reasoning. The basic building
block in possibility theory is the notion of pos-
sibility distribution [6]: let V = {X1, ..., XN}
be a set of state variables whose values are ill-
known such that D1 . . . Dn are their respective
domains. Ω = D1 × . . . × DN denotes the
universe of discourse, which is the cartesian
product of all variable domains in V . Vectors
ω ∈ Ω are often called realizations or sim-
ply “states” (of the world). In what follows,
we use xi to denote possible instances of Xi.
The agent’s knowledge about the value of the
xi’s can be encoded by a possibility distribu-

tion π : Ω → [0, 1] where π(ω) = 1 means
that ω is totally possible and π(ω) = 0 means
that ω is an impossible state. It is generally
assumed that there exist at least one state ω
which is totally possible, π is then said to be
normalized. We denote by ⊤(π) the set of to-
tally possible states in π. From π, one can
compute, for any event A ⊆ Ω, the possibility
measure Π(A) = supω∈A π(ω) that evaluates to
which extend A is consistent with the knowl-
edge represented by π. The particularity of the
possibilistic scale is that it can be interpreted
twofold: either in an ordinal manner, when the
possibility degree reflects only an ordering be-
tween the possible values, so the minimum op-
erator is used to combine different distributions,
or, in a numerical manner, so possibility distri-
butions are combined using the product opera-
tor.

Several researchers tackle different bridges be-
tween probability and possibility theory. When
we deal with those transformations, two cases
can be distinguished, those relative to subjec-
tive probabilities [8] and those relative to objec-
tive ones. In this paper, we focus on these lat-
ters which were used in several practical prob-
lems such as: constructing a fuzzy member-
ship function from statistical data [12], combin-
ing probabilities and possibilities information
in expert systems [10] and reducing the com-
putational complexity [7]. Roughly speaking,
transforming probabilistic distributions to pos-
sibilistic ones, denoted by p → π, is useful
when weak source of information makes prob-
abilistic data unrealistic or to reduce the com-
plexity of the solution or to combine different
types of data. However, transformation from
possibilistic distributions to probabilistic ones,
denoted by π → p, is useful in the case of
decision making. Interestingly enough, when
transforming p → π, some information is lost
because we transform point value probabilities
to interval values ones. In contrast, π → p
adds information to some possibilistic incom-
plete knowledge.
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2.1 Consistency principle

In order to describe different transformations,
several properties, called consistency principle,
were proposed in literature. We retain, in par-
ticular, three of them:

Zadeh consistency principle. Zadeh [15] defined
the probability-possibility consistency principle
such as ”a high degree of possibility does not
imply a high degree of probability, and a low
degree of probability does not imply a low de-
gree of possibility”. The degree of consistency
between p and π is defined by: C(π, p) =∑

i=1...n πi ∗ pi. Zadeh [15] pointed out that
C(π, p) is not a precise law or a relationship be-
tween possibility and probability distributions.
It is an approximate formalization of the heuris-
tic connection stating that lessening the possi-
bility of an event tends to lessen its probability
but not vice-versa.
Klir consistency principle. The concept of con-
sistency condition was redefined by Klir [11].
Assume that the elements of Ω are ordered in
such a way that pi > 0 and pi ≥ pi+1, ∀ i =
{1..n}. Any transformation should be based on
these assumptions:
– A scaling assumption that forces each value πi

to be a function of pi/p1 (where p1 ≥ . . . ≥ pn).
– An uncertainty invariance assumption accord-
ing to which p and π must have the same
amount of uncertainty.
– Consistency condition: πi ≥ pi stating that
what is probable must be possible, so π can be
seen as an upper-bound of p.
Dubois and Prade [5] gave an example to show
that the scaling assumption of Klir may some-
times lead to violation of the consistency prin-
ciple. The second assumption is also debatable
because it assumes that possibilistic and prob-
abilistic information measures are commensu-
rate.
Dubois and Prade consistency principle. Dubois
and Prade defined the consistency principle, dif-
ferently, using these assumptions [4]:
– Consistency condition: Pi < Πi, ∀ i =
{1..n}.

– Preference preservation: Assuming that π
has the same form as p, then ∀(ω1, ω2) ∈
Ω2, p(ω1) > p(ω2) ⇒ π(ω1) > π(ω2) and
p(ω1) = p(ω2) ⇒ π(ω1) = π(ω2).
– Maximum specificity: Let π1 and π2 be two
possibility distributions, then π2 is more spe-
cific than π1 iff: ∀ω ∈ Ω, π2(ω) ≤ π1(ω).

2.2 Probability-Possibility transformation
rules

Several transformation rules are proposed in lit-
erature. We present the most common ones,
namely: Klir transformation (KT), Optimal
transformation (OT), Symmetric transforma-
tion (ST) and Variable transformation (VT).
Klir Transformation (KT). Assume that the el-
ements of Ω are ordered in such a way that:
∀ i = {1..n}, pi > 0, pi ≥ pi+1 and
πi > 0, πi ≥ πi+1 with pn+1 = 0 and
πn+1 = 0. Klir has considered the principle of
uncertainty preservation under two scales [11]:
– The ratio scale: p → π and π → p, named
the normalized transformations, are defined by:

πi =
pi
p1

, pi =
πi

n
∑n

i=1 πi

(1)

–The log-interval scale: p → π and π → p are
defined by:

πi = (
pi
p1
)α , pi =

π
1
α
i∑n

i=1(πi)
1
α

(2)

where α is a parameter that belongs to the open
interval ]0, 1[.
Optimal Transformation (OT). proposed by
Dubois and Prade [4] and also called ”Asym-
metric Transformation”, is defined as follows:

πi =
∑

j/pj≤pi

pj, pi =
n∑

j=1

πj − πj+1

j
(3)

OT is optimal because it gives the most specific
possibility distribution i.e. that loses less
information [7], and it’s asymmetric since the
two formulas in Equation (3) are not converse.
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Sandri et al. [7] suggested a Symmetric Trans-
formation (ST) that needs less computation but
it is quite far from the optimum. It is defined
by:

πi =
n∑

j=1

min(pi, pj) (4)

Variable Transformation (VT). It’s a p → π
transformation proposed by Mouchaweh et al.
[13] and expressed as follows: assume that the
elements of Ω are ordered in such a way that:
∀ i = {1..n}, pi > 0, pi ≥ pi+1 and
πi > 0, πi ≥ πi+1 with pn+1 = 0 and
πn+1 = 0, then:

πi = (
pi
p1
)k.(1−pi) (5)

where k is a constant belonging to the interval:
0 ≤ k ≤ logpn

(1−pn).log(
pn
p1

)
.

Bouguelid [3] proposed V Ti, which is an im-
provement of VT, to make it as specific as OT.
So, a parameter ki is set for each πi. Formally:
∀ i = {1..n},

πi = (
pi
p1
)ki.(1−pi) (6)

where ki belongs to the interval:
0 ≤ ki ≤ log(pi+pi+1+...+pn)

(1−pi).log(
pi
p1

)
, ∀i = {2..n}.

Table 1 summarizes characteristics of KT, OT,
ST, VT and V Ti. For each transformation, it
is mentioned if it deals with discrete (D) and-
or continuous case (C) and if it respects con-
sistency principle (Cs), preference preservation
(PP) and maximum specificity (MS). Clearly,
OT and V Ti are the most interesting rules in the
discrete case for p → π.

Table 1: Summary of transformations
TR p → π π → p Properties

D C Cs PP MS
KT × × × × ×
OT × × × × × × ×
ST × × × × × ×
VT × × ×
VTi × × × × ×

3 Basics on Bayesian and possibilis-
tic networks

Bayesian networks [14] are powerful proba-
bilistic graphical models for representing un-
certain knowledge. Studying the possibilistic
counterpart of Bayesian networks leads to two
variants, namely: min-based possibilistic net-
works corresponding to the ordinal interpreta-
tion of the possibilistic scale and product-based
possibilistic networks corresponding to the nu-
merical interpretation [2]. It is well-known that
product-based possibilistic networks are close
to Bayesian networks since they share the same
features (essentially the product operator) with
almost the same theoretical and practical results
[2]. This is not the case for min-based possi-
bilistic networks due to the particularities of the
min operator (e.g. the idempotency). Over a set
of N variables V = {X1, .., XN}, Bayesian net-
works (denoted by BN ) and possibilistic net-
works (denoted by ΠG⊗ where ⊗ = min in the
ordinal setting, and ⊗ = ∗ in the numerical one)
share the same two components:
– A graphical component composed of a DAG,
G= (V,E) where V denotes a set of nodes repre-
senting variables and E a set of edges encoding
links between nodes.
– A numerical component that quantifies dif-
ferent links. Uncertainty of each node Xi is
represented by a local normalized conditional
probability or possibility distribution in the con-
text of its parents (denoted by Ui). Conditional
uncertainty distributions should respect the nor-
malization constraint for each variable Xi ∈ V ,
where ui is a possible instance of Ui, expressed
by:

∀ui,
∑
xi

P (xi|ui) = 1, max
xi

Π(xi|ui) = 1,

(7)
Given a Bayesian network BN on N variables,
we can compute its joint probability distribution
by the following chain rule :

p(X1, . . . , XN) = ∗i=1..N P (Xi | Ui) (8)

In a similar manner, the joint possibility distri-
bution of a possibilistic network ΠG⊗ is defined
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by the ⊗-based chain rule expressed by:

π⊗(X1, . . . , XN) = ⊗i=1..N Π(Xi | Ui) (9)

where ⊗ = min for the ordinal setting and
⊗ = ∗ for the numerical one.
One of the most interesting treatments that can
be applied for possibilistic networks is to evalu-
ate the impact of a certain event on the remain-
ing variables. Such process, called inference,
consists on computing a-posteriori possibility
distributions of each variable Xi given an evi-
dence e.
Example .1 Let us consider the Bayesian net-
work and the possibilistic network depicted by
Figure .1(a) and Figure .1 (b), respectively
(sharing the same DAG). The joint distributions
of BN and ΠG⊗ using Equations (8) and (9)
are presented in Table 2.

(a) (b)

Figure 1: A Bayesian network (a) and a possi-
bilistic network (b).
Table 2: Joint distributions of BN and ΠG⊗.

A B p π∗ πmin

a1 b1 0.36 1 1
a1 b2 0.18 0.4 0.4
a1 b3 0.06 0.1 0.1
a2 b1 0.2 0.4 0.4
a2 b2 0.12 0.2 0.4
a2 b3 0.08 0.08 0.2

4 Transformation from Bayesian to
possibilistic networks

Probability-possibility transformations can be
useful to study the coherence between proba-
bilistic and possibilistic frameworks and, more
precisely, the consistency of derived distribu-
tions. Our idea consists in applying such trans-
formations from Bayesian networks to possi-
bilistic networks and interpreting their behavior

on joint distributions. Formally, using existing
transformations, we can define transformation
from Bayesian to possibilistic networks in a lo-
cal manner as follows:

Definition .1 Let BN be a Bayesian network
and p be its joint distribution. Let TR be a trans-
formation rule. Let BNtoΠN be the function
that transforms BN into ΠNTR

⊗ using TR under
the setting ⊗ s.t. ⊗ = {∗,min}. Let PDtoΠD
be the function that transforms a probability
distribution into a possibilistic one using TR.
Formally, ΠNTR

⊗ is the transformation of BN
using TR if, ∀Xi ∈ V ,

Π(Xi | Ui) = PDtoΠD(P (Xi | Ui), TR)
(10)

ΠNTR
⊗ = BNtoΠN(BN, TR,⊗) (11)

Example .2 Table 3 depicts the transformation
of conditional tables of the Bayesian network of
Figure .1 (a) using KT, OT, ST, VT and V Ti.

Table 3: Transformation of conditional distri-
butions

Π(A) ΠKT ΠOT,V Ti ΠST ΠV T

a1 1 1 1 1
a2 0.66 0.4 0.8 0.4

Π(B | A) ΠKT ΠOT,V Ti ΠST ΠV T

b1 | a1 1 1 1 1
b2 | a1 0.5 0.4 0.7 0.5
b3 | a1 0.16 0.1 0.3 0.1
b1 | a2 1 1 1 1
b2 | a2 0.6 0.5 0.8 0.27
b3 | a2 0.4 0.2 0.6 0.2

This local transformation does not ensure the
same results as a global one. In other words, the
transformation of the joint distribution underly-
ing the initial Bayesian network is not equiva-
lent to the transformation of its local conditional
distributions, which can affect the inference re-
sults. Let πTR

p be the transformation of the joint
distribution encoded by a Bayesian network BN
using the transformation TR and let πTR

⊗ be the
joint distribution relative to ΠNTR

⊗ obtained us-
ing Definition 1. The following example illus-
trates the problem described above.
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Example .3 Table 4 presents the transforma-
tion of global distributions of the Bayesian net-
work of Figure .1 (a) and of the resulted pos-
sibilistic network ΠN⊗ using KT, OT, ST, VT
and V Ti. As depicted in Table 4, if we are in

Table 4: Possibility distributions using differ-
ent transformations

A B p KT OT, V Ti ST V T
πTR
p

a1 b1 0.36 1 1 1 1
a1 b2 0.18 0.5 0.44 0.8 0.38
a1 b3 0.06 0.16 0.06 0.36 0.06
a2 b1 0.2 0.55 0.64 0.84 0.45
a2 b2 0.12 0.33 0.26 0.62 0.19
a2 b3 0.08 0.22 0.14 0.46 0.09

πTR
∗

a1 b1 0.36 1 1 1 1
a1 b2 0.18 0.5 0.4 0.7 0.5
a1 b3 0.06 0.16 0.1 0.3 0.1
a2 b1 0.2 0.66 0.4 0.8 0.4
a2 b2 0.12 0.4 0.2 0.64 0.108
a2 b3 0.08 0.26 0.08 0.48 0.08

πTR
min

a1 b1 0.36 1 1 1 1
a1 b2 0.18 0.5 0.4 0.7 0.5
a1 b3 0.06 0.16 0.1 0.3 0.1
a2 b1 0.2 0.66 0.4 0.8 0.4
a2 b2 0.12 0.6 0.4 0.8 0.27
a2 b3 0.08 0.4 0.2 0.6 0.2

a numerical setting, the values of πTR
p are dif-

ferent from those of πTR
∗ and, if we deal with

an ordinal setting, the order between πTR
p and

πTR
min is not preserved, as well. For instance, for

the transformation ST, more precisely for a1b2
and a2b2, we can see that 0.8 > 0.62 while
0.7 < 0.8. It is also the case of VT for a1b2 and
a2b1. Suppose, now, that we have the evidence
B = b2, then for πST

p we have a1 > a2 while the
same evidence implies a2 > a1 for πST

min. This
means that, considering πST

min as the consistent
transformation of the initial Bayesian network
and using it to infer evidence can lead to erro-
neous results.

The question that may arise is the following:
Do all transformations suffer from the problem
of information loss? The answer can be found
in the following example.

Example .4 Let us consider the BN of Figure
.4 (a) such that p > q. This implies that p > 0.5

and q < 0.5, which in its turn implies that
0.5p > 0.5q > 0.25. Table 5 shows the joint
distributions where x < 1, y < 1 and z < 1 in
both ordinal and numerical settings and TR can
be any transformation (i.e. KT, OT, ST, VT and
V Ti). We start by interpreting product-based

(a) (b)

Figure 2: A Bayesian network BN (a) and
its transformation into a possibilistic network
ΠN⊗ (b).

Table 5: Joint distributions

A B p πTR
p πTR

∗ πTR
min

a1 b1 0.5p 1 1 1
a1 b2 0.5q x y y
a2 b1 0.25 z 1 1
a2 b2 0.25 z 1 1

networks which only rely on numerical values.
It is obvious, from columns 4 and 5 of Table 5,
that there is a loss of information since values
of πTR

p and πTR
∗ are different. When we deal

with min-based networks, the focus is only on
the order induced by values. In fact, the order
of πTR

p of the initial network BN (Figure 2 (a))
is {a1b1 > a1b2 > (a2b1 = a2b2)}, while the
order relative of πTR

min of the possibilistic net-
work is {(a1b1 = a2b1 = a2b2) > a1b2}. We
can see that the transformation does not pre-
serve the order.

Following this problem, we propose two new
properties. The first one (resp. the second
one), presented in Definition 2 (resp. Defini-
tion 3), is applicable for transforming Bayesian
networks into min-based possibilistic networks
(resp. product-based possibilistic networks).
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These properties should be seen as extensions
of Dubois and Prade Consistency principle de-
scribed above.

Definition .2 Let TR be a transformation rule
used in order to transform a Bayesian net-
work BN into a min-based possibilistic network
ΠNTR

min. Let p be the joint distribution relative
to BN computed using Equation (8) and πTR

p be
its transformation by TR. Let πTR

min be the joint
distribution relative to ΠNTR

min using Equation
(9) (s.t ⊗ = min). Let δ(πTR

p ) and δ(πTR
min)

be the order underlying πTR
p and πTR

min, respec-
tively. Then TR is said to be consistent iff:

δ(πTR
p ) = δ(πTR

min) (12)

and
⊤(πTR

p ) = ⊤(πTR
min) (13)

Definition .3 Let TR be a transformation rule
used in order to transform a Bayesian network
BN into a product-based possibilistic network
ΠNTR

∗ . Let p be the joint distribution relative
to BN computed using Equation (8) and πTR

p be
its transformation by TR. Let πTR

∗ be the joint
distribution relative to ΠNTR

∗ using Equation
(9) (s.t ⊗ = ∗). Then TR is said to be consistent
iff:

πTR
p = πTR

∗ (14)

Regarding the ordinal setting, since the order
of p is the same of πTR

p due to Preference
preservation condition, then, p and πTR

min should
have the same order to preserve the information
of the two networks. Regarding the numerical
setting, TR should preserve exactly the same
possibility measures for all events in πTR

p and
πTR
∗ .

We point out that Equation (13) is respected by
all existing transformations. So, using those lat-
ters, we maintain at least the normalized values
in both ordinal and numerical settings but we
lose the information encoded by joint distribu-
tions.

5 Experimental study
The objective of the proposed experimental
study is to understand the impact of the gap
observed when using existing transformations
from Bayesian networks to possibilistic net-
works on inference results. In fact, one of the
most interesting treatments that can be applied
for possibilistic networks is to evaluate the im-
pact of a certain event on the remaining vari-
ables. Such process can be achieved using in-
ference algorithms consisting on computing a-
posteriori possibility distributions of each vari-
able given an evidence e.

The experimentation is based on 100 random
BNs. For each BN, we generate the DAG
structure and the conditional probability distri-
butions randomly by varying three parameters:
number of nodes (from 4 to 10), their cardinali-
ties (from 2 to 4) and the maximum number of
parents (from 1 to 3). Then, we generate ran-
domly the evidence e and a variable of interest
Xi. The experimentation protocol can be sum-
marized as follows:
– For each generated Bayesian network, we
compute its global probability joint distribution
p using the chain rule ( Equation 8).
– We transform p into a possibilistic joint distri-
bution πp. Among existing transformations, we
use Optimal Transformation (Equation 3) since
it respects Dubois and Prade consisteny princi-
ple presented above.
– From πp, we compute the marginal distribu-
tion Πjoint(Xi | e) using min-based condition-
ing [6].
– We transform the Bayesian network BN into
a min-based possibilistic network ΠNmin using
OT.
– Once ΠNmin is computed, we apply possi-
bilistic Junction Tree propagation algorithm [9]
in order to compute Π(Xi | e).
– We compute the marginal distributions of the
variable of interest Xi.
– Finally, we compare the values of Πjoint(Xi |
e) and Π(Xi | e) and also the order underlying
them.

The experimentation highlights an interesting
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result showing that, for 85% of cases, the or-
der behind Π(Xi | e) is equal to the one cor-
responding to Πjoint(Xi | e). This means that
in the case of min-based possibilistic networks,
we can use OT even if the obtained possibilis-
tic network is different from the network gener-
ated from the joint possibility distribution. This
corresponds exactly to the spirit of the ordinal
setting of possibility theory since only the or-
der induced by distributions is important. Our
method can be an approximation of propagation
for min-based possibilistic networks. It relies
on the junction tree approach, which is sensible
to clusters size. It is interesting to improve in-
ference time of 85% of cases by considering,
for instance, compilation-based inference ap-
proaches for min-based possibilistic networks.
6 Conclusion

Our objective in this paper is to study the trans-
formation of Bayesian networks into possibilis-
tic networks using existing transformations pro-
posed in literature. We found out that switch-
ing from one model to another does not pre-
serve the information incorporated in joint dis-
tributions (either numerical values for ΠN∗ or
the order induced by values for ΠNmin). Such
result allows us to conclude, at first sight, that
such transformations are inappropriate in the
case of graphical models. However, by follow-
ing the impact of those transformations on the
inference results, for the case of min-based pos-
sibilistic networks, the experimentation shows
that the order induced by marginal distributions
are conserved in both of the networks i.e. the
initial Bayesian network and the obtained pos-
sibilistic one, in most of the cases, which is
in harmony with the spirit of qualitative set-
ting of possibility theory since only the order
indued by distributions is important. In our fu-
ture work, we will take advantage of compila-
tion techniques for min-based possibilistic net-
works in order to make inference faster. We will
propose two new transformations respecting the
properties we proposed in order to transform
Bayesian networks into possibilistic networks
(product-based and min-based).
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