
SYMPAS: A Database System for Managing Symbolic Preferences

Y. Harizi1 A. Hadjali2 H. Azzoune1
1 LRIA/ USTHB, Alger, Algeria
2 LIAS/ENSMA, Poitiers, France

LRIA/USTHB, Alger, Algeria, yharizi@usthb.dz
LIAS/ENSMA, Poitiers, France, allel.hadjali@ensma.fr

LRIA/USTHB, Alger, Algeria, azzoune@yahoo.fr

Résumé :
Dans cet article, on propose un système de base de

données pour la gestion des préférences symboliques
exprimées sous forme de déclarations conditionnelles.
Ces préférences sont représentées au moyen de formules
logiques possibilistes. Le processus de traitement de
requêtes est discuté d’une manière explicite, en partic-
ulier, l’étape de sélection des top-k réponses. Pour mon-
trer la faisabilité de notre système, une première série
d’expérimentations a été menée et certaines mesures de
performance sont effectuées et analysées.

Mots-clés :
Requêtes à préférences, Logique possibiliste, Top-k

réponses.

Abstract:
In this paper, we propose a database system capable of

managing symbolic preferences expressed under the form
of conditional statements. Such preferences are translated
into logic formulas in a possibilistic logic manner. Pref-
erence query processing is discussed in an explicit way,
particularly, the step that consists in selecting the top-k
answers. Some preliminary experiments are conducted
to show the feasibility of our system.

Keywords:
Preference queries, Possibilistic logic, Top-k answers.

1 Introduction

In the last two decades, there has been a grow-
ing interest in preference queries in the database
community [15][13]. Indeed, the use of pref-
erences inside database systems has a number
of potential advantages. First, it is desirable to
offer more expressive query languages that are
able to express user’s requirements in a more
faithful way. Second, the use of preferences in
queries provides a basis for rank-ordering the
retrieved items, which is especially valuable if
a query is satisfied by a large set of items. More-
over, a classical query may also have an empty

set of answers, while a relaxed (and thus less
restrictive) version of the query can still be sat-
isfied by several items in the database, at least
to some degree.

Approaches to database preference queries may
be classified into two categories according to
their qualitative or quantitative nature [15]. In
the latter, preferences are expressed quantita-
tively by a monotone scoring function, and the
overall score is positively correlated with par-
tial scores. Since the scoring function asso-
ciates each tuple with a numerical score, tu-
ple t1 is preferred to tuple t2 if the score of t1
is higher than the score of t2. Representatives
of this family of approaches are top-k queries
[7] and fuzzy-set-based approaches (e.g., [4]).
In the qualitative approach, preferences are de-
fined through binary preference relations. Since
such relations can be defined in terms of scoring
functions, the qualitative approach is more gen-
eral than the quantitative one. Representatives
of qualitative approaches are those relying on
a dominance relationship, e.g. Pareto order, in
particular Preference SQL [14], Skyline queries
[2] and the approach presented in [8]. See also
[5][3].

As users’ preferences are more and more di-
verse and complex, the alternatives number de-
scribed by means of a set of attributes are of-
ten very large. Facing this situation, prefer-
ences are not generally expressed in terms of
explicit (pre)orders. It is then necessary to make
their specification in a compact way. Compact

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

95



representation of preferences has raised a sub-
stantial interest in Artificial Intelligence [10][6]
and, more recently, in the database field [13][5].
Graphical models (as CP-nets [5] and GAI [12])
and logical models (as possibilistic logic [11])
are particularly adapted to this kind of represen-
tation.

Let us note that conditional preference state-
ments are often used for describing preferences
in local, contextualized way 1. To illustrate this
approach let us consider the following example.

Example 1. Assume a schema instance of
a relation Phone (make, model, color), where
’make’, ’model’ and ’color’ take respectively
their values in: {Apple(a), Samsung(s), Nokia
(n), LG (l)...}, {iPhone 5, iPhone 4, iPhone
4s, iPhone 3g , iPhone 3gs, Galaxy s3, Galaxy
s2, Galaxy y,..., N8, C7, C3} and {white(w),
black(b), red (r), grey (y),....}. To buy a phone,
a user can communicate her/his preferences as
a set of pieces of information as follows:
Q1 = (i) "(s)he prefers Apple (a) phones to
Samsung (s) phones,
(ii) For Apple, (s)he prefers iPhone 5 (i5) to
iPhone 4 (i4),
(iii) For Samsung, (s)he prefers Galaxy s3 (g3)
to Galaxy s2 (g2) and Galaxy s2 (g2) to Galaxy
y (gy),
(iv) s(he) prefers black (b) phones to white (w)
phones".
The problem of interest is how to help this user
to buy a phone by selecting and rank-ordering
a set of phones from a database that better fit
her/his preferences?

Statements of the above kind can be encoded
with graphical or logical representations. For
instance in [13], conditional preference state-
ments are translated into classical logic formu-
las associated with symbolic priority levels, in
a possibilistic logic manner. Only preferences
on binary database attributes are considered in

1This means that preferences are (internal) context-
dependent. Context here captures conditions that involve
the data items stored in the database for which prefer-
ences are expressed.

[13]. Starting from this work, we propose here a
database system, called SYMPAS 2, that allows
handling users’ preferences expressed in a com-
pact way under the form of conditional state-
ments. In particular, we investigate the issue of
selecting the top-k answers to the query at hand
in the case where the target database may con-
tain either binary or non-binary attributes.

The paper is organized as follows. Section 2
gives an overview of the SYMPAS architecture
where the main modules of the system are il-
lustrated and shortly described. Section 3 dis-
cusses the four steps (preferences translation,
alternatives building, alternatives ranking, top-k
answers selection) to query processing in SYM-
PAS. Section 4 addresses the empty answers
issue. In Section 5, some preliminary exper-
iments are provided to show the feasibility of
the system SYMPAS and evaluate some per-
formances. Section 6 concludes the paper and
draws some perspectives for future work.

2 An overview of SYMPAS archi-
tecture

This section outlines the main components of
the system SYMPAS (see Figure 1). As inputs,
the system takes a set of conditional preferences
statements and a number, k, of answers the user
desires. As for outcomes, it provides the top-k
databse tuples rank-ordered according to these
preferences. Four components are designed:

• A module for building the alternatives. Al-
ternatives are classes of tuples that can in-
terest the user according to her/his pref-
erences communicated to the system (see
Table 1). Two methods have been imple-
mented to build these alternatives: from
the preferences communicated or from the
content of the queried database.

• A module for building the preference for-
mulas. It aims at representing the con-
ditional preferences stated in possibilistic
logic formulas.

2SYMbolic Preferences mAnagment System.

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

96



• A module for rank-ordering the alterna-
tives. First, it computes the satisfaction
level associated with each alternative by
leveraging its violation of the possibilistic
formulas. Then, a rank-ordering is estab-
lished between the different alternatives.

• A module for selecting the top-k answers.
For each alternative, an SQL query is built
and then a set of tuples that satisfy it is se-
lected. This evaluation process stops when
k answers is obtained.

Figure 1: SYMPAS architecture

3 Conditional preference query
processing

In the SYMPAS system, the conditional prefer-
ences considered are in the form: "in context c,
a1 is preferred to a2, a2 is preferred to a3, ...,
an−1 is preferred to an", where {a1 ... an} is a
subset of values of a database attribute. In Ex-
ample 1, the user prefers the models g3 to g2 and
g2 to gy where ’g3’, ’g2’ and ’gy’ are a subset of
values of the attribute ’model’. Note that a user
is supposed to not be aware of all the values of
an attribute to express her/his preferences.

The question of interest is how a set of answers
can be selected and rank-ordered according to a
set of preferences expressed in the above form?
The idea is firstly to represent the preferences
as possibilistic logic formulas using symbolic
weights, in the spirit of the approach proposed
in [13]. Secondly to identify the classes of
tuples (alternatives) that interest the user and
then to rank-order these alternatives according

to their symbolic satisfaction levels w.r.t. the
logic formulas. Finally to select from the target
database the k best tuples that fit the possible al-
ternatives. Below we provide details about each
step for handling such conditional preferences.

3.1 Preference clauses building

As pointed out in [13], the possibilistic en-
coding of the conditional preferences of the
form "in context c, a is preferred to b", when
(b ≡ ¬a), is a possibilistic formula of the form:
(¬c ∨ a, 1 − α) 3 where the symbolic level
1 − α expresses a priority (rather than a cer-
tainly level). This encodes a constraint of the
form N(¬c ∨ a) ≥ 1 − α, here it is equivalent
to a constraint on a conditional necessity mea-
sure N(a|c) ≥ 1 − α. This is still equivalent
to Π(¬a|c) ≤ α, where Π is the dual possibil-
ity measure associated with N. It expresses that
the possibility of not having a is upper bounded
by α, i.e. ¬a is all the more impossible as α is
small. When a and b do not cover all the possi-
ble choices (b 6= ¬a), the possibilistic formula:
(¬c ∨ a ∨ b, 1 − β), 1 − β > 1 − α, should be
added.

More generally, the possibilistic encoding of the
conditional preferences of the form "in context
c, a1 is preferred to a2, a2 is preferred to a3, ...,
an−1 is preferred to an", with the assumption
that a1, ..., an do not necessarily cover all the
possible choices, is equivalent to the following
n possibilistic formulas:
{(¬c ∨ a1 ∨ ... ∨ an, 1 − α1), (¬c ∨ a1 ∨ ... ∨
an−1, 1−α2), ... (¬c∨a1, 1−αn)}, with 1−α1 >
1− α2 > ... > 1− αn.
Note that when a1∨...∨an cover all the possible
choices in the database, the first clause becomes
a tautology and thus does not need to be written.

In algorithm 1, we show how the possibilis-
tic clauses are computed from a user prefer-
ence query. In our system, each preference
p(i) is represented by a quadruple P (i) =
{Ac, Ap, VAc , VAp}, where Ac stands for the

3One can check that the formula (¬c ∨ a ∨ b, 1) is
dropped since it is a tautology.

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

97



context attribute, VAc the value of the context at-
tribute, Ap preference attribute and VAp the set
of values of the preference attribute. For each
preference P (i), we compute |Pi.VAp| 4 possi-
bilistic clauses, each clause is represented by a
quintuple C(j) = {Ac, VAc , Ap, VAp , s} where
s represents a symbolic priority weight. As
can be seen, algorithm 1 returns both the set of
possibilistic clauses encoding the preferences of
the user and the induced partial order between
the symbolic weights associated with these pos-
sibilistic clauses.

Algorithm 1 Clauses building
1: Symbol = {α, β, γ, δ...}
2: j ← 0 – the first clause
3: for each preference Pi, i: 1 to p do
4: for t = |Pi.VAp

| down to 1 do
5: Cj .Ac ← Pi.Ac

6: Cj .Ap ← Pi.Ap

7: Cj .VAc ← Pi.VAc

8: for k = 1 to t do
9: Cj .VAp

(k)← Pi.VAp
(k)

10: end for
11: Cj .s← Symbol(j)
12: Oij = Symbol(j) – the partial order
13: j ← j + 1 – to generate the next clause
14: end for
15: end for
16: return {C1, ..., Cj}
17: return O

Example 2 (Example 1 cont’d). One can check
that algorithm 1 leads to the following encod-
ing of the preferences involved in the query Q1:
{(a∨s, 1−α1), (a, 1−α2), (¬a∨i5∨i4, 1−β1),
(¬a ∨ i5, 1 − β2), (¬s ∨ g3 ∨ g2 ∨ gy, 1 − γ1),
(¬s ∨ g3 ∨ g2, 1 − γ2), (¬s ∨ g3, 1 − γ3),
(b∨w, 1− δ1), (b, 1− δ2), }, with the following
partial order between weights O = { α1 < α2,
β1 < β2, γ1 < γ2 < γ3, δ1 < δ2 }.

3.2 Alternatives building

Alternatives correspond to the different inter-
pretations of the set of attributes stated in the
preference query. They represent the classes of
tuples that can interest the user. For instance, in

4This quantity stands for the cardinality of VAp related
to the preference P (i).

Figure 2: Preference representation

the queryQ1, preferences are about three differ-
ent attributes: ’make’, ’model’ and ’color’ and
ai5b is an example of alternative. The alterna-
tives are calculated from the preferences present
in the user query. This means that we consider
just the choices stated in the user preferences.
To do this, our system takes as input the con-
ditional preferences in the form of one or more
independent trees. Possible alternatives are ob-
tained by an in-depth scanning of the tree result-
ing from fusing all the independent trees (see
further Figure 2).

Example 3 (Example 1 cont’d). Let us con-
sider the preference query Q1. One can observe
that preferences can be represented by two inde-
pendent trees (as illustrated in Figure ??). The
first three preferences form the first tree and the
fourth preference constitutes the second tree. To
calculate the alternatives, we combine the two
trees by considering the alternatives of the first
tree as a context of the preferences of the sec-
ond tree. To do this, the fourth preference (i.e.,
the user prefers black phones to white phones)
can be replaced by the following preferences:
(i) for iPhone 5 (resp. iPhone 4), (s)he prefers
black phones to white phones ; (ii) for Galaxy
s3 (resp. Galaxy s2, Galaxy y), (s)he prefers
black phones to white phones.
Then, ten different types of phones are ob-
tained: T = { ai5b, ai4b, sg3b, sg2b, sgyb, ai5w,
ai4w, sg3w, sg2w, sgyw }.

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

98



3.3 Alternatives ranking

To rank-order the possible alternatives, we use
their satisfaction levels w.r.t. to the set of pos-
sibilistic formulas expressing the basic pref-
erences of the user. Such satisfaction levels
are calculated by leveraging the violation of
these formulas by each alternative. In Table
1, we summarize all the satisfaction levels cor-
responding to the set of alternatives T. For in-
stance, the vector of satisfaction of the alterna-
tive ai4b is (1, 1, 1, β2, 1, 1, 1, 1, 1) which means
that it satisfies all the formulas except the for-
mula (¬a ∨ i5, 1− β2).

A
l t
er
n
a
ti
v
es

(a
∨
s,
1
−
α
1
)

(a
,1
−
α
2
)

(¬
a
∨
i 5
∨
i 4
,1
−
β
1
)

(¬
a
∨
i 5
,1
−
β
2
)

(¬
s
∨
g
3
∨
g
2
∨
g
y
,1
−
γ
1
)

(¬
s
∨
g
3
∨
g
2
,1
−
γ
2
)

(¬
s
∨
g
3
,1
−
γ
3
)

(b
∨
w
,1
−
δ 1
)

(b
,1
−
δ 2
)

ai5b 1 1 1 1 1 1 1 1 1
ai4b 1 1 1 β2 1 1 1 1 1
sg3b 1 α2 1 1 1 1 1 1 1
sg2b 1 α2 1 1 1 1 γ3 1 1
sgyb 1 α2 1 1 1 γ2 γ3 1 1
ai5w 1 1 1 1 1 1 1 1 δ2
ai4w 1 1 1 β2 1 1 1 1 δ2
sg3w 1 α2 1 1 1 1 1 1 δ2
sg2w 1 α2 1 1 1 1 γ3 1 δ2
sgyw 1 α2 1 1 1 γ2 γ3 1 δ2

Table 1: Satisfaction levels of T

Alternative ranking is established using a tech-
nique called "extended Leximin" [13]: Let α =
(α1, . . . , αn) and β = (β1, . . . , βn) be two lists
of weights attached, respectively, to two proofs
of the same proposition, say q. Then α and
β can be ordered using an "extended leximin"
defined as follows: First, α and β must be in-
creasingly reordered. Assume that the obtained
reordered lists correspond to (λ1, . . . , λn) and
(δ1, . . . , δn). Then the leximin ordering of the
lists α and β writes: α �leximin β iff λ1 > δ1
or ∃i such that ∀j = 1 · · · i;λj = δj and
λi+1 > δi+1.

Since the values of the weights (α2, β1, γ1,
delta1, etc.) are unknown, no particular order-
ing is assumed between them, this technique

leads to a partial order between possible alter-
natives.
Now, by applying this technique on T of exam-
ple 3, we get the following pre-order:
ai5b >kc { ai4b, sg3b, sg2b, sgyb, ai5w, ai4w,
sg3w, sg2w, sgyw }; ai4b >kc ai4w; ai5w >kc

ai4w; sg3b >kc sg2b >kc sgyb; sg3w >kc sg2w
>kc sgyw.

Some alternatives as sg2b, sg3w are incompara-
ble because the user prefers: (i) the model g3 to
g2 in case of Samsung and (ii) w.r.t color, black
phone b to white phone w. But, if we add a
pre-order between the symbolic weights by any
consistent set of ordering constraints, possibly
taking into account some priorities between the
user’s preferences, a supplementary pre-order
between the set of alternatives can be obtained.
Let us now consider available the priorities be-
tween the user’s preferences. For instance, the
priority order between the preferences is similar
to their order when stated by the user. Then, the
partial order between clauses is expressed with
the following constraints { α2 < β1, β2 < γ1,
γ3 < δ1 }. Finally, we get the following order
between the set of alternatives for the query Q1:
ai5b �lex ai5w �lex ai4b �lex ai4w �lex sg3b
�lex sg3w �lex sg2b �lex sg2w �lex sgyb �lex
sgyw.

3.4 Top-k answers selection

Top-k answers are obtained by evaluating the
rank-ordered set of alternatives over the queried
database. To this end, we associate with each
alternative an SQL query. It is worth noticing
that in our system this evaluation process stops
when a maximal number of answers, k, is re-
trieved. This means that the alternatives are not
necessary all evaluated. See Algorithm 2 for the
top-k answers selection procedure.

Example 4 (Example 1 cont’d). For the rank-
ordered alternatives set T1 = {ai5b, ai5w,ai4b,
ai4w, sg3b, sg3w, sg2b, sg2w, sgyb, sgyw}, the
corresponding SQL queries write:
For ai5b: "select * from Phone where Make =
’Apple’ and Model = ’iPhone 5’ and Color =

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

99



Algorithm 2 Top-k answers selecting
1: T = {t1, t2, ..., tn}: the rank-ordered set of n alter-

natives
2: k: the maximum number of tuples to retrieve
3: i← 1 – the first alternative
4: while k > 0 do
5: s← Select(ti,K) – select s tuples correspond to

the alternative ti
6: k ← k − s;
7: i← i+ 1 – next alternative
8: end while

black",
For ai5w: "select * from Phone where Make
= ’Apple’ and Model= ’iPhone 5’ and Color =
white",
And so on.

4 Empty answers case

One can observe that when the alternatives
(T ) is calculated from the user preferences,
we have no ideas about the content of the
queried database. Then, it may be happen
that no tuples in the database correspond to
the computed alternatives and then no tuples
(partially) satisfy the (conditional) preferences.
To overcome this problem, one way is to cal-
culate the set of alternatives from the queried
database. We consider all the choices about the
attributes related to preferences stated, that may
exist in the database. This calculation can be
done by simply building an SQL query using
the different attributes stated in the preferences.
In the case of Example 1, to obtain the alterna-
tives, one can use the following SQL query on
the attributes ’make’, ’model’ and ’color’:
Q2 ="Select Make, Model, Color From BD
Group by Make, Model, Color".
One can, for instance, get alternatives that
exist in the database and not stated in user’s
preferences: black iPhone 3 (ai3b), white
iPhone 3 (ai3w), red Samsung g3 (sg3r), black
Samsung g4 (sg4b), white Samsung g4 (sg4w),
black Nokia c7 (nc7b), white Nokia c7 (nc7w).
Such alternatives partially satisfy the user
preferences and their satisfaction levels w.r.t
the logic formulas are: (1,α2,1,1,1,1,1,δ1,δ2),

(1,1,β1,β2,1,1,1,1,1), (α1,α2,1,1,1,1,1,1,1),
(1,α2,1,1,γ1,γ2,γ3,1,1), (α1,α2,1,1,1,1,1,1,δ2),
(1,α2,1,1,γ1,γ2,γ3,1, δ2), (1,1,β1,β2,1,1,1,1,δ2)
By applying the leximin order, we get the
following order: ai3b �lex ai3w �lex sg3r �lex
sg4b �lex sg4w �lex nc7b �lex nc7w.

5 Experimentation study

Let us first precise that the system SYM-
PAS is implemented in Java and the experi-
ments are run on Intel Core i3 CPU 2.3GHz
with 4.0GB RAM under Windows 8. We
have used five databases of different sizes
2ko, 20ko, 50ko, 100ko, 500ko, 1000ko, on a
relation Phone with the schema, Phone (Make,
Model, Color, Memory, Operator, Price).

5.1 First experiment

This experiment aims at measuring the execu-
tion time of a preference query 5 to select the
top-k answers over databases of different sizes
figure 3. As can be seen, the execution time
to select 30 to 200 tuples from the databases of
sizes 20ko, 50ko, 100ko is lower then the one
of size 2ko The execution time does not (sig-
nificantly) change from k = 200 tuples when
queried the database of size 2ko (This behavior
is also observed in the cases of sizes 20ko and
50ko).
To provide some explanation about the above
results, let us analyze the alternatives number
used (i.e., the number of SQL queries sent to
the databases) for satisfying the user preference
query in each case. This analysis is illustrated
in Figure 4.
From Figures 3 and 4, we have:
T 1
5 (100ko) ' T 1

5 (50ko) ' T 1
5 (20ko) ' T 1

5 (2ko).
T 6
50(2ko) > T 1

50(100ko) ' T 1
50(50ko) ' T 1

50(20ko).

As can be seen, there is some relationship
between the executed alternatives number

5Tn
k (|DB|): The execution time to select the top k

tuples from the database of size |DB|, n is the number
of alternatives used or the number of SQL queries sent to
the database to select the k tuples.

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

100



used for satisfy the preference query and the
execution time of the query. The higher the
number of alternatives, the higher execution
time is. This is due to the fact that in our
system the set of alternatives are built from
the preference query, and these alternatives are
used for retrieving the top-k tuples desired as
answers to the query at hand. This is why we
have: T 10

100(2ko) ' T 10
200(2ko) ' ... ' T 10

2000(2ko).

Figure 3: Different execution times

Figure 4: Executed alternatives number

5.2 Second experiment

The aim of this experiment is to compare the ex-
ecution time of preference queries w.r.t. the two
methods implemented in SYMPAS for building
alternatives (from the user preference query and
from the database content).
We use the following scenario: (i) we consider
the preference query (Q1) used in the first ex-
periment, the alternatives calculated from the

conditional preferences are {ai5b, ai5w,ai4b,
ai4w, sg3b, sg3w, sg2b, sg2w, sgyb, sgyw} ; (ii)
we also consider a queried database of 50ko tu-
ples. This database may contain up to 200 dif-
ferent types of phones corresponding to the at-
tribute values stated in the preference query.
Figure 5 shows the execution time evo-
lution of the query (Q1, k), with k ∈
{5, 10, 15, 20, 50, 100}. One can observe that
the execution time when we calculate the al-
ternatives from preference query is lower than
the one obtained by calculating the alternatives
from the content of the database. However, the
second approach could be useful in the case
where the first one results in empty answers.

Figure 5: Second experiment

6 Conclusion

In this paper, the first foundations of a database
system capable of handling user preferences
expressed under the form of conditional state-
ments, are discussed where possibilistic logic
plays a key role for representing such condi-
tional preferences. The top-k answers selec-
tion to a user query is investigated as well.
Some preliminary experiments are conducted to
show the feasibility of our proposal and to make
some performance measures related to execu-
tion time. We plan to perform thorough exper-
iments, in the one hand, to study the effective-
ness and efficiency of the proposed system on
large real databases and, on the other hand, to
compare the system to other approaches. Sym-
bolic priority expressed in an imprecise way [1]

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

101



will be also considered. A third line for future
research is to investigate the issue of revising
preferences in SYMPAS system in the spirit of
[9].

References

[1] S. Benferhat, J. Hué, S. Lagrue, and
J. Rossik. Interval-based possibilistic
logic. In Proc. IJCAI, pages 750–755,
2011.

[2] S. Borzsonyi, D. Kossmann, and
K. Stocker. The skyline operator. In
Proc. of ICDE, pages 421–430, 2001.

[3] P. Bosc, A. Hadjali, and O. Pivert. An ap-
proach to competitive conditional prefer-
ences for database flexible querying. In-
ternational Journal of Intelligent Systems,
26(3):206–227, 2011.

[4] P. Bosc and O. Pivert. Sqlf: a rela-
tional database language for fuzzy query-
ing. IEEE Trans. on Fuzzy Sys., 3:1–17,
1995.

[5] R-I. Brafman and C. Domshlak. Database
preference queries revisited. In Technical
Report TR2004-1934, Cornell University,
Comput. and Info. Science, 2004.

[6] R-I. Brafman and C. Domshlak. Prefer-
ence handling - an introductory tutorial.
In Artificial Intelligence Magazine, vol-
ume 30, pages 58–86, 2009.

[7] N. Bruno, S. Chaudhuri, and L. Gra-
vano. Top-k selection queries over rela-
tional databases: mapping strategies and
performance evaluation. ACM Trans. on
Database Sys., 27:153–187, 2002.

[8] J. Chomicki. Preference formulas in re-
lational queries. ACM Transactions on
Database Systems, 28(4):1–40, 2003.

[9] J. Chomicki. Database querying under
changing preferences. In Annals of Math-
ematics and Artificial Intelligence, pages
79–109, 2007.

[10] C. Domshlak, E. Hüllermeier, S. Kaci, and
H. Prade. Preferences in artificial intel-
ligence: An overview. Artificial Intelli-
gence Journal (In Special Issue on Rep-
resenting, Learning, and Processing Pref-
erences: Theoretical and Practical Chal-
lenges), 175:7–8, 2011.

[11] D. Dubois and H. Prade. Possibilis-
tic logic: a retrospective and prospective
view. Fuzzy Sets and Sys., 144:3–23,
2004.

[12] C. Gonzales and Perny P. Gai networks
for utility elicitation. In Proc. of the 9th In-
ter. Conf. on Principles of Knowledge Rep.
and Reas., pages 224–234, 2004.

[13] A. Hadjali, S. Kaci, and H. Prade.
Database preference queries - a possibilis-
tic logic approach with symbolic prior-
ities. Annals of Mathematics and AI,
63:357–383, 2011.

[14] W. Kiessling and G. Kostler. Prefer-
ence sql— design, implementation, expe-
riences. In Proc. of VLDB, pages 999–
1001, 2002.

[15] K. Stefanidis, G. Koutrika, and E. Pitoura.
A survey on representation, composition
and application of preferences in database
systems. ACM Trans. on Database Sys.,
36, 2011.

22èmes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

102




