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Résumé :
Nous proposons un formalisme mathématique

pour analyser l’interprétabilité d’une partition floue,
ainsi qu’un algorithme générique pour la préserver
pendant le processus d’optimisation du système flou.
L’approche est assez souple et il aide à automatiser
le processus d’optimisation. Certains outils sont em-
pruntés au domaine de la topologie algébrique.
Mots-clés :

système flou, partition floue, interprétabilité, op-
timisation
Abstract:

We present a mathematical framework to analyze
the interpretability of a fuzzy partition and a generic
algorithm to preserve it during the optimization of
the fuzzy system. This approach is rather flexible
and it helps to highly automatize the optimization
process. Some tools come from the field of algebraic
topology.
Keywords:

fuzzy system, fuzzy partition, interpretability, op-
timization, tuning

1 Introduction

Fuzzy ruled based systems have found many
real-world applications. One of their appeal-
ing features is that in most cases they are eas-
ily interpretable by humans. However, when
used to tackle complex problems, there is of-
ten need to make use of automatic optimiza-
tion methods that improve the original sys-
tem (cf. [2]). These automatic methods have
a drawback: It may entail important losses
in the interpretability of the system, in par-
ticular in the fuzzy partitions. The goal of
this paper is to deal with this loss of inter-
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pretability.

Let us say that the fuzzy system under study
is composed of rules of the form “If x1 is A1
and . . . xn is An, then y is B”, where xi and
y are linguistic variables and Ai and B are
predicates. These predicates have their nu-
meric counterparts: The fuzzy sets which for-
malize their meaning. If these rules are fixed
and we adjust the parameters determining
the fuzzy sets, the process is usually called
tuning or parametric optimization. If we ad-
just the number of rules, the space of func-
tions to which the fuzzy sets belong, or some
other high-level components of the fuzzy sys-
tem, the process is usually called structural
optimization or learning. The work pre-
sented in this paper concerns the case of
parametric optimization.

Although there is no standard definition for
the notion of interpretability of a fuzzy sys-
tem, we can distinguish, following [1, 3], two
levels of interpretability: That of fuzzy parti-
tions and that of rule analysis. In this paper
we deal with the problem of preserving the
interpretability of the fuzzy partitions during
the process of parametric optimization. We
can divide this work in two parts: Firstly we
provide a mathematical framework in which
the concept of interpretability may be for-
malized, and secondly we provide a generic
algorithm that takes as input a fuzzy system
and a function to optimize (that measures
the quality of a fuzzy system) and gives as
output an optimized fuzzy system that pre-
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serves interpretability.

Thanks to this formalization the process of
optimizing will be, in our view, much more
painless for the user than in previous ap-
proaches. In particular it may be carried out
not only by experts in optimization of fuzzy
systems as usual, but also by users that are
just experts in the problem-specific domain
and whose knowledge in fuzzy theory may be
limited.

In our approach we do not fix a priori the
notion of interpretability. The mathemati-
cal framework that we propose is problem-
independent and sufficiently generic to let
the user establish which configuration he
wants to preserve during the optimization
process. The essential point is the formaliza-
tion of the notion of interpretability in topo-
logical and geometrical terms. Its preserva-
tion implies some particular constraints on
the acceptable solutions for the optimization
problem. In the generic algorithm that we
propose, the codification and verification of
these constraints is automatically done.

The geometric and topological analysis be-
gins with a fuzzy system that the user consid-
ers interpretable. The domain of each vari-
able is partitioned in such a way that the rel-
ative order of the different membership func-
tions is constant on each region. These re-
gions, and the order relations associated to
them, will determine the geometric and topo-
logical constraints that will be taken into ac-
count during the optimization. In order to
codify this information, a key role is played
by homology groups. We make use of these
well-known algebraic objects, which are able
to capture a very significant part of the topol-
ogy of a space and are well-suited for com-
puter calculations. There exist several im-
plementations to compute different homol-
ogy groups. The reader interested in more
details may consult for instance [5, 6, 8].

2 A topological framework for
the analysis of interpretabil-
ity

2.1 The main idea

What we propose in this paper is not an abso-
lute definition of interpretability, but rather
a framework in which the actual definition,
which will strongly depend on the user, can
be expressed. We may talk then, given a user
U , of interpretability relative to U . Our ap-
proach is strongly focused on topology: Our
viewpoint is that the properties of the fuzzy
partition that the user requires to be pre-
served are essentially of a topological nature.

Let us say a user defines a fuzzy partition
such as the one on Figure 1. It seems rea-
sonable to consider that the user requires the
optimization process to preserve, at least, the
order of the terms. This order, though not
explicitly formalized, underlies the solution
we usually find in the literature: To strongly
constrain the possible variations of the mem-
bership functions, in order to obtain very
similar configurations as the original one (as
in Figure 1).

0

1
MediumLow High

0

1
MediumLow High

Figure 1: Example of a fuzzy partition and
some possible constraints on it.

Some difficulties may arise if we try to de-
fine an order in a case such as that of Fig-
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ure 2. In more general cases, such as those
of 2-dimensional variables, the concept of or-
der may not even make any sense. However,
there are always some basic properties that
the user wants to preserve to be able to at-
tach some meaning to the system. In our
approach, these properties have a topologi-
cal nature and are locally determined by the
values of the different membership functions.
In particular, we think that the relative order
of these values is crucial.

The main idea is to partition the numeric do-
main of the variable into regions in which the
relative order of the membership functions is
constant, such as in Figure 2.

0

1

R3

R1 R5R2 R4 R6

R7

R8 R9 R10

R11

R12 R13

E>L=H

E>L>H

E=L>H

L>E>H

L>E=H

L>H>E

L=H>E

H>L>E

H>L=E

H>E>L

H=E>L

E>H>L

E>H=L

Extreme
Low High

0 10050 7525

x1 x2 x3 x4 x5 x6 x7x8 x9

Figure 2: Decomposition of the domain in
regions Ri in which the relative order of the
membership functions is constant. We sup-
pose that the domain of the variable is the
interval [0, 100].

Some properties of this partition will be re-
quired to be preserved during the optimiza-
tion process. Examples of such properties
could be:

• There is a region R2 in which the rela-
tion Extreme > Low > High holds, with

neighbors R1 and R3, such that in R1 we
have Low = High < Extreme, and in R3
we have Extreme = Low > High.

• The value 50 belongs to the region R6
that verifies Low > High > Extreme.

The rest of the section will be devoted to
make this main idea more precise. In partic-
ular, we will present two key notions: The
geometric and topological signatures.

2.2 Notation and definitions

The definitions concerning fuzzy systems,
such as linguistic variable, membership func-
tion, etc. are standard (see for instance
[7]). We consider that the numeric do-
mains associated to each linguistic variable
are equipped with a natural topology (as it
is the case with Rn).

• Let Ω be the set of possible fuzzy sys-
tems under consideration, and let A =
A1× . . .×An (typically A ⊆ Rn) be the
domain of the parameter vector that we
consider as determining a fuzzy system.
A solution to our optimization problem
will be then an element ā ∈ A.

• We denote by ω : A → Ω the map that
determines a fuzzy system ω(ā) from the
parameter vector ā. In particular ω de-
termines every membership function of
the system.

• We denote by V the set of all linguistic
variables and we suppose it is the same
for every ω ∈ Ω. We denote by Domv

the domain of a linguistic variable v ∈
V .

2.3 Geometric signature

Let ω ∈ Ω be a fuzzy system and v ∈ V a
linguistic variable. The geometric signature
of ω relative to v, that we denote by Gω(v), is
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a mathematical object that captures all the
potentially interesting properties of the par-
tition induced by ω onDomv. It provides the
regions in which the relative order of the dif-
ferent membership functions is constant, and
together with each region, its corresponding
order.

As an illustration, consider that for a certain
ω ∈ Ω and v ∈ V , Figure 2 represents the
partition induced by ω on Domv. In this
case Gω(v) is the map that associates to i ∈
{1, . . . , 13} the region Ri, together with the
corresponding order relation on terms. For
instance:

• Gω(v)(1) is the region R1, i.e. the in-
terval [0, x1], together with the order
Extreme > Low = High.

• Gω(v)(3) is the region R3, i.e. the point
{x2}, together with the order Extreme =
Low > High. In practice, regions of low
dimension (0 in this case) may be ig-
nored.

In some cases the user might consider cer-
tain “dummy” functions Domv → [0, 1] to
code particular constraints, such as interac-
tions between membership functions. For
instance, to deal with strong partitions we
might consider the constant function 1 and
the function ∑

i µi(x) (where µi represents
the i-th membership function).

The geometric signature of ω, denoted by Gω,
is the map that associates Gω(v) to v ∈ V .

2.4 Topological signature

The topological signature of ω relative to v,
that we denote by Tω(v), is a a weaker con-
cept than that of the geometric signature,
i.e. for ω, η ∈ Ω, if Gω(v) = Gη(v) then
Tω(v) = Tη(v). It codes the topological in-
formation contained in Gω(v). The topologi-
cal signature of ω is the map that associates
Gω(v) to v ∈ V . We denote by Tω.

In the field of computational topology, the
use of homology groups is widely spread to
deal with the topology of a space. We will
not provide here any definition concerning
homology theory, since it is out of the scope
of this paper; nevertheless we should say that
these groups are topological invariants of al-
gebraic nature, that capture an important
part of the topological information of a space
and are well-suited from an algorithmic view-
point. The reader interested may consult for
instance [5], a standard reference in algebraic
topology, or [6, 8] for an approach more fo-
cused on computational aspects.

We can propose then to code the topological
signature in terms of these homology groups,
that we denote by HN for N ∈ N. Let
v ∈ V and consider ω, η ∈ Ω such that ω
induces a partition on Domv composed of re-
gions R1, . . . , Rn and η induces a partition on
Domv composed of regions S1, . . . , Sn. Then
we say that Tω(v) and Tη(v) are equal if
there is a n-permutation σ such that:

1. the order on terms corresponding to Ri

is the same as that of Sσ(i) for i =
1, . . . , n, and moreover

2. Hn(⋃
k∈K Sh(k)) ≈ Hn(⋃

k∈K Rk) for each
K ⊆ I and n ∈ N.

The homology groups are characterized by
some integers, namely the Betti numbers and
the torsion coefficients; they will be stored
and used as topological signature. However,
we should say that this is a general-purpose
coding; in practice there may be different
ways to implement the notion topological sig-
nature, depending mostly on the nature of
Domv. In some cases the computation of
these homology groups may not be necessary
and a much more efficient coding can be de-
vised.

To illustrate the notion of topological signa-
ture, consider that for a certain ω ∈ Ω and
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v ∈ V , Figure 2 represents the partition in-
duced by ω on Domv. In this case, Tω(v)
provides for each i ∈ {1, . . . , 13} the the or-
der on terms corresponding to the region Ri,
and for each K ⊆ {1, . . . , 13} the topologi-
cal information of ⋃

i∈K Ri. For instance, if
we consider K = {4, 5}, Tω(v) codes the fact
that R4 ∪ R5 is connected, and if we con-
sider K = {1, 6, 9} the fact that R1∪R6∪R9
is composed of three connected components.
Essentially, Tω(v) codes the following infor-
mation:

1. There are 13 regions Ri (each one being
a connected set),

2. the order on terms corresponding to R1
is Extreme > Low = High, that of R2 is
Extreme > Low > High, etc.

3. R1 is neighbor of R2, R2 is neighbor of
R1 and R3, etc.

Hence if we consider another η ∈ Ω whose
decomposition of Domv is given by regions
S1, . . . , SM , then Tη(v) = Tω(v) iff M = 13,
and for some permutation σ we have:

1. The order on terms corresponding to
Sσ(1) is Extreme > Low = High, that of
Sσ(2) is Extreme > Low > High, etc.

2. Sσ(1) is neighbor of Sσ(2), Sσ(2) is neigh-
bor of Sσ(1)and Sσ(3), etc.

3 User interactions: An op-
erational definition of inter-
pretability

As we have already mentioned, we do
not provide an absolute definition of inter-
pretability, but rather, given a user U , a con-
ceptual and operational framework to deal
with interpretability relative to U . The goal
of this section is to show how we can define
and manipulate this interpretability relative

to U , relaying on the notions presented in
Section 2 and, importantly, on some interac-
tions with U . We should mention that the in-
teractions we present here seem to us flexible
enough to cover most part of needs; however,
other interactions could be consider.

Our base hypothesis is that the notion of
interpretability has essentially a topological
flavor. An oversimplified version of this hy-
pothesis would be :

Assumption 1. If a user U considers ω ∈
Ω to be interpretable, then there is no η ∈
Ω considered as interpretable by U and such
that Tη 6= Tω.

Assumption 1 is slightly stronger than the
actual assumption we make, however it syn-
thesizes quite clearly the main idea of our
approach. We want to provide an opera-
tional definition of interpretability relative to
U . For this we need, of course, some interac-
tion with U . Since we are talking about inter-
pretability in the context of the optimization
of a fuzzy system, we suppose that there ex-
ists at least one ω0 ∈ Ω that is interpretable
relative to U and that U is capable of de-
scribing it, i.e. providing a parameter vector
ā ∈ A such that ω(ā) = ω0.

This is the slightest interaction with U that
our method needs. However, if we want to
make our method more flexible, we can al-
low U to provide more information. Next we
present the two other kind of interactions we
may consider.

Relaxation of the topological conditions
This is basically a relaxation of Assumption
1. Once U has provided a ω0 ∈ Ω that he con-
siders to be interpretable, one could consider
that for a solution ā ∈ A to be acceptable,
i.e. such that ω(ā) is interpretable relatively
to U , ā must satisfy Tω(ā) = Tω0 . Instead,
we may let the user relax this condition: He
could omit, if he wishes, some of the topolog-
ical conditions imposed by Tω0 . Typically it
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may consist in merging different regions and
requiring a relaxed order on terms; in this
case the relaxed order should be compatible
with the order of the merged regions (see ex-
ample in Figure 5). This notion of compat-
ibility could be easily formalized in terms of
the lattice of partial orders on terms.

Addition of geometric conditions Con-
versely U may strengthen the conditions for
a solution to be considered interpretable.
This extra conditions are of a geometric
rather than topological nature. This will
allow U to specify the regions to which
certain points should belong. If we consider
again Figure 2, U may want to include
the condition “0 ∈ R1”, that is “0 should
belong to the region indexed by 1”, or more
precisely “0 should belong to the region
whose corresponding order on terms is
Extreme > Low = High, that is neighbor of
other region (namely R2) whose correspond-
ing order is Extreme > Low > High, that is
neighbor of etc. ”. It is clear that we can
codify these kind of conditions in terms of
the point 0 and the signature Tω0 .

4 Algorithm

We present here the different parts of a
generic algorithm that fulfills our purpose:
To optimize a given fuzzy system while pre-
serving its interpretability. In Figure 3 we
can see a scheme of this algorithm, but rather
than explaining it in its more abstract form,
we prefer to focus in the explanation of a par-
ticular example. The generic case will easily
be induced from this description.

Let us consider a certain fuzzy system ω0
modeling a 2-dimensional problem and in
which only one linguistic variable v is in-
volved. For instance there may be some rules
involving the terms East, West and Center
that are used to activate some procedures:
We could imagine a fuzzy controller that pro-
duces policy decisions (e.g. public trans-

SIGNATURES
COMPUTATION

USER
INTERACTION

 USER
INTERACTION

User requirements

Function 
to optimize

Final solution

OPTIMIZATION
VALIDATION

New solution 
ā

Validity of ā

Geometric 
signature Gω0

TEST
Tω(ā)

INITIAL STEP
 - PREPROCESSING - 

OPTIMIZATION PROCESS 
- ITERATIVE -

Initial 
fuzzy system

ω0

Topological
signature  

Tω0

CONSTRAINTS
INTEGRATION

Interpretability 
constraints

Gω(ā)

SOLUTION
GENERATOR

SIGNATURES
COMPUTATION

Figure 3: Scheme of the algorithm.

ports, taxes, etc.) for towns in a certain area,
following rules of the type “If town T is in
region East then apply policy P to T”. An
example of the membership functions associ-
ated to East, West and Center can be found
in Figure 4.

Let us say a user U considers ω0 as inter-
pretable and wants to optimize it using a
performance function f .

Preprocessing

Step 0. The user gives ω0 and f as input.

Step 1. The first part of the algorithm con-
sists in computing the geometric signature,
that is the regions in which the order of
terms is constant. Let µWest, µCenter, µEast :
Domv → [0, 1] be the membership functions
corresponding to the terms West, Center and
East. The domain is discretize and each
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West EastCenter

Figure 4: Example of three membership
functions associated to a 2-dimensional vari-
able. Darker colors represent values closer to
1. The black dots represent towns.

function is evaluated on each point of the
grid. This evaluation induces a label for
each point, e.g. a point x gets the la-
bel West < East < Center if µWest(x) <
µEast(x) < µCenter(x). Then we can explic-
itly compute the regions (maximal connected
components with the same label) by using,
for instance, the method described in [4].

Step 2. At this point comes the second in-
teraction with U (apart from Step 0): The
regions are presented to him (we can omit re-
gions of dimension 0 and 1) and then he can,
first relax the topological conditions that will
be imposed to the acceptable (interpretable)
solutions, and afterwards impose some geo-
metric conditions. In Figure 5 we can see an
example in which U , only interested in the
function with highest value, decides to re-
lax the topological conditions by merging the
regions that share the same highest-valued
function; he also imposes the geometric con-
ditions “town X must belong to the region in
which the value of West is the biggest” and
“town Y must belong to the region in which
the value of Center is the biggest”.

Step 3. No other interaction with U is
needed, since he has just operationally de-
fined what he considers as interpretable:
This definition is essentially contained in
the right side of Figure 5 (in Figure 6 we
can find examples of interpretable and not-
interpretable solutions). This information is
then coded in terms of homology groups, fol-

W < C < E

W < E < C

C < W < EC < E < W

E < C < W

E < W < C

C < E < W C < W < E
. < . < C

. < . < E

. < . < W

Town X

Town Y

Figure 5: Regions induced by the functions
in Figure 4. On the right side, a relaxation
of the topological conditions and the addition
of two geometric conditions: Since only the
highest-valued functions are relevant, some
labels are merged; moreover town X must
belong to the region in which µWest is the
highest-valued function and town Y to the
region in which µCenter is the highest-valued
function.

lowing the explanations of Section 2 and us-
ing for instance the algorithms presented in
[6].

Optimization process

Step 4. This well-coded information, as well
as the function f and ω0, is given as an input
to an optimization algorithm, and is inter-
preted as a constraint C on the (signatures of
the) solutions. This optimization algorithm
may be of different types (e.g. metaheuristic
or exact) depending on the nature of f . As it
is the case for any iterative optimization al-
gorithm, it should contain a “solution genera-
tor” module. This module may have different
ways of dealing with constraints. The most
basic option would be to test C for each so-
lution that it generates and to use the result
of the test to generate a new solution. An-
other option would be to do some kind of pre-
processing, in which the acceptable domain
is approximated, and then to only generate
valid solutions. In any case we will need to
iterate a process similar to Step 1 and Step 3:
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. < . < C

Town X

Town Y

. < . < W
. < . < E

Town X

Town Y

. < . < W

. < . < C

. < . < E

. < . < C

Town X

Town Y

. < . < W

. < . < E

Figure 6: The top figure corresponds to a
possible configuration of a solution that is
acceptable. The bottom figures correspond
to unacceptable configurations: The left one
does not satisfy the topological conditions
since the region whose highest-valued func-
tion is µCenter is disconnected; the right one
does not satisfy the geometric conditions
since town Y does not belong to the region
whose highest-valued function is µCenter.

Given ā ∈ A, compute Gω(ā) and Tω(ā), and
use them to test if ā satisfies C. This will
ensure that the final solution is interpretable
relative to U .

5 Conclusion

We have presented a generic method to deal
with the loss of interpretability in fuzzy par-
titions during the optimization of a fuzzy sys-
tem. It relies essentially on topological con-
cepts and tools, which confers a solid mathe-
matical foundation, and makes use of differ-
ent well-known algorithms in computational
topology. Our definition of interpretability is
not absolute, but rather relative to each user,
who implicitly defines the notion by means
of some specific interactions. That makes
this approach quite flexible. Moreover the

method can be uniformly applied in many
situations without the need of an expert in
optimization of fuzzy systems. The next step
is to fully implement the algorithm and to
validate it by user-testing.
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